\(\int (1+x^2) \sqrt {1+x^2+x^4} \, dx\) [227]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 145 \[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\frac {3 x \sqrt {1+x^2+x^4}}{5 \left (1+x^2\right )}+\frac {1}{5} x \left (2+x^2\right ) \sqrt {1+x^2+x^4}-\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{5 \sqrt {1+x^2+x^4}}+\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{5 \sqrt {1+x^2+x^4}} \]

[Out]

3/5*x*(x^4+x^2+1)^(1/2)/(x^2+1)+1/5*x*(x^2+2)*(x^4+x^2+1)^(1/2)-3/5*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*a
rctan(x))*EllipticE(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2)/(x^4+x^2+1)^(1/2)+3/5*(x^2+1)*(cos(2*a
rctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticF(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2)/(x^4+x^2+1)^
(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1190, 1211, 1117, 1209} \[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{5 \sqrt {x^4+x^2+1}}-\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{5 \sqrt {x^4+x^2+1}}+\frac {1}{5} \left (x^2+2\right ) \sqrt {x^4+x^2+1} x+\frac {3 \sqrt {x^4+x^2+1} x}{5 \left (x^2+1\right )} \]

[In]

Int[(1 + x^2)*Sqrt[1 + x^2 + x^4],x]

[Out]

(3*x*Sqrt[1 + x^2 + x^4])/(5*(1 + x^2)) + (x*(2 + x^2)*Sqrt[1 + x^2 + x^4])/5 - (3*(1 + x^2)*Sqrt[(1 + x^2 + x
^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/(5*Sqrt[1 + x^2 + x^4]) + (3*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 +
 x^2)^2]*EllipticF[2*ArcTan[x], 1/4])/(5*Sqrt[1 + x^2 + x^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1190

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(2*b*e*p + c*d*(4*p +
 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Dist[2*(p/(c*(4*p + 1)*(4*p + 3
))), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{5} x \left (2+x^2\right ) \sqrt {1+x^2+x^4}+\frac {1}{15} \int \frac {9+9 x^2}{\sqrt {1+x^2+x^4}} \, dx \\ & = \frac {1}{5} x \left (2+x^2\right ) \sqrt {1+x^2+x^4}-\frac {3}{5} \int \frac {1-x^2}{\sqrt {1+x^2+x^4}} \, dx+\frac {6}{5} \int \frac {1}{\sqrt {1+x^2+x^4}} \, dx \\ & = \frac {3 x \sqrt {1+x^2+x^4}}{5 \left (1+x^2\right )}+\frac {1}{5} x \left (2+x^2\right ) \sqrt {1+x^2+x^4}-\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \tan ^{-1}(x)|\frac {1}{4}\right )}{5 \sqrt {1+x^2+x^4}}+\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{4}\right )}{5 \sqrt {1+x^2+x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.31 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.16 \[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\frac {2 x+3 x^3+3 x^5+x^7+3 \sqrt [3]{-1} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} E\left (i \text {arcsinh}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )+\frac {3}{2} \sqrt {2+\left (1-i \sqrt {3}\right ) x^2} \sqrt {2+\left (1+i \sqrt {3}\right ) x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {1}{2} \left (x+i \sqrt {3} x\right )\right ),\frac {1}{2} i \left (i+\sqrt {3}\right )\right )}{5 \sqrt {1+x^2+x^4}} \]

[In]

Integrate[(1 + x^2)*Sqrt[1 + x^2 + x^4],x]

[Out]

(2*x + 3*x^3 + 3*x^5 + x^7 + 3*(-1)^(1/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*EllipticE[I*ArcSin
h[(-1)^(5/6)*x], (-1)^(2/3)] + (3*Sqrt[2 + (1 - I*Sqrt[3])*x^2]*Sqrt[2 + (1 + I*Sqrt[3])*x^2]*EllipticF[ArcSin
[(x + I*Sqrt[3]*x)/2], (I/2)*(I + Sqrt[3])])/2)/(5*Sqrt[1 + x^2 + x^4])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.43 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.54

method result size
risch \(\frac {x \left (x^{2}+2\right ) \sqrt {x^{4}+x^{2}+1}}{5}+\frac {6 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {12 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )-E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}\) \(223\)
default \(\frac {2 x \sqrt {x^{4}+x^{2}+1}}{5}+\frac {6 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {12 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )-E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {x^{3} \sqrt {x^{4}+x^{2}+1}}{5}\) \(233\)
elliptic \(\frac {2 x \sqrt {x^{4}+x^{2}+1}}{5}+\frac {6 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {12 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )-E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )\right )}{5 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {x^{3} \sqrt {x^{4}+x^{2}+1}}{5}\) \(233\)

[In]

int((x^2+1)*(x^4+x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/5*x*(x^2+2)*(x^4+x^2+1)^(1/2)+6/5/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3
^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-12/5/(
-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)/
(1+I*3^(1/2))*(EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-EllipticE(1/2*x*(-2+2*I*3^(1
/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.76 \[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\frac {3 \, \sqrt {2} {\left (\sqrt {-3} x - x\right )} \sqrt {\sqrt {-3} - 1} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-3} - 1}}{2 \, x}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) + 6 \, \sqrt {2} x \sqrt {\sqrt {-3} - 1} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-3} - 1}}{2 \, x}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) + 4 \, {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {x^{4} + x^{2} + 1}}{20 \, x} \]

[In]

integrate((x^2+1)*(x^4+x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/20*(3*sqrt(2)*(sqrt(-3)*x - x)*sqrt(sqrt(-3) - 1)*elliptic_e(arcsin(1/2*sqrt(2)*sqrt(sqrt(-3) - 1)/x), 1/2*s
qrt(-3) - 1/2) + 6*sqrt(2)*x*sqrt(sqrt(-3) - 1)*elliptic_f(arcsin(1/2*sqrt(2)*sqrt(sqrt(-3) - 1)/x), 1/2*sqrt(
-3) - 1/2) + 4*(x^4 + 2*x^2 + 3)*sqrt(x^4 + x^2 + 1))/x

Sympy [F]

\[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\int \sqrt {\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )} \left (x^{2} + 1\right )\, dx \]

[In]

integrate((x**2+1)*(x**4+x**2+1)**(1/2),x)

[Out]

Integral(sqrt((x**2 - x + 1)*(x**2 + x + 1))*(x**2 + 1), x)

Maxima [F]

\[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\int { \sqrt {x^{4} + x^{2} + 1} {\left (x^{2} + 1\right )} \,d x } \]

[In]

integrate((x^2+1)*(x^4+x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + x^2 + 1)*(x^2 + 1), x)

Giac [F]

\[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\int { \sqrt {x^{4} + x^{2} + 1} {\left (x^{2} + 1\right )} \,d x } \]

[In]

integrate((x^2+1)*(x^4+x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + x^2 + 1)*(x^2 + 1), x)

Mupad [F(-1)]

Timed out. \[ \int \left (1+x^2\right ) \sqrt {1+x^2+x^4} \, dx=\int \left (x^2+1\right )\,\sqrt {x^4+x^2+1} \,d x \]

[In]

int((x^2 + 1)*(x^2 + x^4 + 1)^(1/2),x)

[Out]

int((x^2 + 1)*(x^2 + x^4 + 1)^(1/2), x)